Home

Fiber Optic Gyroscope manufacturer

  • Fiber Optic Gyroscopes for Inertial Navigation
    Fiber Optic Gyroscopes for Inertial Navigation Jan 13, 2025
    Key Points   Product: Fiber Optic Gyroscope GF70ZK Key Features: Components: Employs fiber optic gyroscopes for high precision inertial measurements. Function: Provides rapid start-up and reliable navigation data for various applications. Applications: Suitable for inertial navigation systems, platform stability, and positioning systems in aerospace and autonomous vehicles. Performance: Zero bias stability between 0.01 and 0.02, tailored for accuracy and measurement range needs. Conclusion: The GF70ZK combines compact size and low power consumption, making it a versatile choice for demanding navigation tasks across multiple industries. 1. What is inertial navigation To understand what inertial navigation is, we first need to break the phrase into two parts, that is, navigation + inertia.Navigation, in simple terms, solves the problem of getting from one place to another, indicating the direction, typically the compass.Inertia, originally derived from Newtonian mechanics, refers to the property of an object that maintains its state of motion. It has the function of recording the motion state information of the object.A simple example is used to illustrate inertial navigation. A child and a friend play a game at the entrance of a room covered with tiles, and walk on the tiles to the other side according to certain rules. One forward, three left, five front, two right… Each of his steps is the length of a floor tile, and people outside the room can get his complete motion trajectory by drawing the corresponding length and route on the paper. He doesn’t need to see the room to know the child’s position, speed, etc.The basic principle of inertial navigation and some other types of navigation is pretty much like this: know your initial position, initial orientation (attitude), the direction and direction of movement at each moment, and push forward a little bit. Add these together (corresponding to the mathematical integration operation), and you can just get your orientation, position and other information.So how to get the current orientation (attitude) and position information of the moving object? You need to use a lot of sensors, in inertial navigation is the use of inertial instruments: accelerometer + gyroscope.Inertial navigation uses gyroscope and accelerometer to measure the angular velocity and acceleration of the carrier in the inertial reference frame, and integrates and calculates the time to obtain the velocity and relative position, and transforms it into the navigation coordinate system, so that the carrier’s current position can be obtained by combining the initial position information.Inertial navigation is an internal closed loop navigation system, and there is no external data input to correct the error during the carrier movement. Therefore, a single inertial navigation system can only be used for short periods of navigation. For the system running for a long time, it is necessary to periodically correct the internal accumulated error by means of satellite navigation. 2. Gyroscopes in inertial navigation Inertial navigation technology is widely used in aerospace, navigation satellite, UAV and other fields because of its high concealment and complete autonomous ability to obtain motion information. Especially in the fields of micro-drones and autonomous driving, inertial navigation technology can provide accurate direction and speed information, and can play an irreplaceable role in complex conditions or when other external auxiliary navigation signals fail to play the advantages of autonomous navigation in the environment to achieve reliable attitude and position measurement. As an important component in inertial navigation system, fiber optic gyro plays a decisive role in its navigation ability. At present, there are mainly fiber optic gyroscopes and MEMS gyroscopes on the market. Although the precision of the fiber optic gyroscope is high, its entire system is composed of couplers,modulator, optical fiber ring and other discrete components, resulting in large volume, high cost, in the micro UAV, unmanned and other fields can not meet the requirements for its miniaturization and low cost, the application is greatly limited. Although MEMS gyro can achieve miniaturization, its accuracy is low. In addition, it has moving parts, poor resistance to shock and vibration, and is difficult to apply in harsh environments. 3 Summary Micro-Magic Inc’s fiber optic gyroscope GF70ZK is specially designed according to the concept of traditional fiber optic gyroscopes, with a small size of 70*70*32mm; Light weight, less than or equal to 250g; Low power consumption, less than or equal to 4W; Start fast, start time is only 5s; This fiber optic gyroscope easy to operate and easy to use, and is widely used in INS, IMU, positioning system, north finding system, platform stability and other fields.The zero bias stability of our GF80 is between 0.01 and 0.02. The biggest difference between these two fiber optic gyroscope is that the measurement range is different, of course, Our fiber optic gyroscope can be used in inertial navigation, you can make a detailed choice according to the accuracy value and measurement range, you are welcome to consult us at any time and get more technical data. GF70ZK Fibre Optic Gyroscope Sensors North Finder Navigation Inertial Navigation Attitude/Azimuth Reference System   G-F80 Miniature Fiber Optic Gyro Sensors 80mm Compact Size  
  • How does Tactical Fiber Optic Gyroscope Work?
    How does Tactical Fiber Optic Gyroscope Work? Jan 13, 2025
    Key Points Product: Fiber Optic Gyroscope (FOG) Key Features: Components: Based on optical fiber coils, utilizing the Sagnac effect for precise angular displacement measurements. Function: Offers high sensitivity and accuracy, ideal for determining orientation in moving objects. Applications: Widely used in military (e.g., missile guidance, tank navigation) and expanding into civilian sectors (e.g., automotive navigation, surveying). Data Fusion: Combines inertial measurements with advanced microelectronics for enhanced precision and stability. Conclusion: The fiber optic gyroscope is pivotal for high-precision navigation, with promising growth potential across diverse applications. Fiber optic gyroscope industry market With its unique advantages, fiber optic gyroscope has a broad development prospect in the field of precision physical quantity measurement. Therefore, exploring the influence of optical devices and physical environment on the performance of fiber optic gyros and suppressing the relative intensity noise have become the key technologies to realize the high precision fiber optic gyro. With the deepening of research, the integrated fiber gyroscope with high precision and miniaturization will be greatly developed and applied. Fiber optic gyroscope is one of the mainstream devices in the field of inertia technology at present. With the improvement of technical level, the application scale of fiber optic gyro will continue to expand. As the core component of fiber optic gyros, the market demand will also grow. At present, China’s high-end optical fiber ring still needs to be imported, and under the general trend of domestic substitution, the core competitiveness of China’s optical fiber ring enterprises and independent research and development capabilities still need to be further enhanced. At present, the optical fiber ring is mainly used in the military field, but with the expansion of the application of optical fiber gyroscope to the civilian field, the application proportion of optical fiber ring in the civilian field will be further improved. According to the "2022-2027 China Fiber Optic Gyroscope industry Market Survey and Investment Advice Analysis Report" : The fiber optic gyroscope is a sensitive element based on the optical fiber coil, and the light emitted by the laser diode propagates along the optical fiber in two directions. The difference of light propagation path determines the angular displacement of the sensitive element. Modern fiber optic gyro is an instrument that can accurately determine the orientation of moving objects. It is an inertial navigation instrument widely used in modern aviation, navigation, aerospace and national defense industries. Its development is of great strategic significance to a country’s industry, national defense and other high-tech development.Fiber optic gyro is a new all-solid-state fiber optic sensor based on Sagnac effect. Fiber optic gyro can be divided into interferometric fiber optic gyros (I-FOG), resonant fiber optic gyro (R-FOG) and stimulated Brillouin scattering fiber optic gyro (B-FOG) according to its working mode. According to its accuracy, fiber optic gyro can be divided into: low-end tactical level, high-end tactical level, navigation level and precision level. Fiber optic gyroscopes can be divided into military and civilian according to their openness. At present, most fiber optic gyros are used in military aspects: fighter and missile attitude, tank navigation, submarine heading measurement, infantry fighting vehicles and other fields. Civil use is mainly automobile and aircraft navigation, bridge surveying, oil drilling and other fields.Depending on the accuracy of the fiber optic gyroscope, its applications range from strategic weapons and equipment to commercial grade civilian fields. Medium and high-precision fiber optic gyroscopes are mainly used in high-end weapons and equipment fields such as aerospace, while low-cost, low-precision fiber optic gyroscopes are mainly used in oil exploration, agricultural aircraft attitude control, robots and many other civilian fields with low precision requirements. With the development of advanced microelectronics and optoelectronics technologies, such as photoelectric integration and the development of special fiber optics for fiber optic gyros, the miniaturization and low-cost of fiber optic gyros have been accelerated. Summary Micro-Magic Inc’s fiber optic gyro is mainly a medium precision tactical fiber optic gyro, compared with other manufacturers, low cost, long service life, the price is very dominant, and the application field is also very wide, including two very hot selling GF50, GF-60, you can click the details page for more technical data. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
  • Precision Analysis of Fiber Optic Gyro Engineering Structure Deformation Detection
    Precision Analysis of Fiber Optic Gyro Engineering Structure Deformation Detection Jan 13, 2025
    Key Points Product: Fiber Optic Gyroscope-Based Deformation Detection System Key Features: Components: Incorporates high-precision fiber optic gyroscopes for angular velocity measurement and trajectory calculation. Function: Combines gyroscopic data with distance measurements to detect structural deformations with high accuracy. Applications: Suitable for civil engineering, structural health monitoring, and deformation analysis in bridges, buildings, and other infrastructures. Performance: Achieves deformation detection accuracy better than 10 μm at a running speed of 2 m/s using medium-precision gyroscopes. Advantages: Compact design, lightweight, low power consumption, and user-friendly operation for ease of deployment. Conclusion:This system provides precise and reliable deformation measurements, offering valuable solutions for engineering and structural analysis needs. 1 Method of engineering structure deformation detection based on fiber optic gyroscope The principle of the engineering structure deformation detection method based on fiber optic gyro is to fix the fiber optic gyro to the detection device, measure the angular velocity of the detection system when running on the measured surface of the engineering structure, measure the operating distance of the detection device, and calculate the operating trajectory of the detection device to realize the detection of engineering structure deformation. This method is referred to as the trajectory method in this paper. This method can be described as “two-dimensional plane navigation”, that is, the position of the carrier is solved in the plumb surface of the measured structure surface, and the trajectory of the carrier along the measured structure surface is finally obtained. According to the principle of trajectory method, its main error sources include reference error, distance measurement error and Angle measurement error. The reference error refers to the measurement error of the initial inclination Angle θ0, the distance measurement error refers to the measurement error of ΔLi, and the Angle measurement error refers to the measurement error of Δθi, which is mainly caused by the measurement error of the angular velocity of the fiber optic gyroscope. This paper does not consider the influence of reference error and distance measurement error on the deformation detection error, only the deformation detection error caused by the fiber optic gyroscope error is analyzed. 2 Analysis of deformation detection accuracy based on fiber optic gyroscope 2.1 Error modeling of fiber optic gyroscope in deformation detection applications Fiber optic gyro is a sensor for measuring angular velocity based on Sagnac effect. After the light emitted by the light source passes through the Y-waveguide, two beams of light rotating in opposite directions in the fiber ring are formed. When the carrier rotates relative to the inertial space, there is an optical path difference between the two beams of light, and the optical interference signal related to the rotational angular speed can be detected at the detector end, so as to measure the diagonal speed.The mathematical expression of the fiber optic gyro output signal is: F=Kw+B0+V. Where F is the gyro output, K is the scale factor, and ω is the gyroThe angular velocity input on the sensitive axis, B0 is the gyroscopic zero bias, υ is the integrated error term, including white noise and slowly varying components caused by various noises with long correlation time, υ can also be regarded as the error of zero bias.The sources of measurement error of fiber optic gyroscope include scale factor error and zero deviation error. At present, the scale factor error of the fiber optic gyroscope applied in engineering is 10-5~10-6. In the application of deformation detection, the angular velocity input is small, and the measurement error caused by the scale factor error is much smaller than that caused by the zero deviation error, which can be ignored. The DC component of the zero-bias error is characterized by the zero-bias repeatability Br, which is the standard deviation of the zero-bias value in multiple tests. The AC component is characterized by zero bias stability Bs, which is the standard deviation of the gyroscope output value from its mean in one test, and its value is related to the sampling time of the gyroscope. 2.2 Calculation of deformation error based on fiber optic gyroscope Taking the simple supported beam model as an example, the error of deformation detection is calculated, and the theoretical model of structural deformation is established. On this basis, the detection is setBased on the operating speed and sampling time of the system, the theoretical angular velocity of the fiber optic gyro can be obtained. Then the angular velocity measurement error of the fiber optic gyro can be simulated according to the zero deviation error model of the fiber optic gyro established above. 2.3 Example simulation calculation The simulation setting of running speed and sampling time adopts a range-varying mode, that is, the ΔLi passed by each sampling time is fixed, and the sampling time of the same line segment is changed by changing the running speed. For example, when the ΔLi is 1 mm, such as the running speed is 2 m/s, the sampling time is 0.5 ms. If the operating speed is 0.1 m/s, the sampling time is 10 ms. 3 Relationship between fiber optic gyroscope performance and deformation measurement error Firstly, the effect of zero-bias repeatability error is analyzed. When there is no zero bias stability error, the angular velocity measurement error caused by zero bias error is fixed, such as the faster the motion speed, the shorter the total measurement time, the smaller the impact of zero bias error, the smaller the deformation measurement error. When the running speed is fast, the zero bias stability error is the main factor causing the system measurement error. When the running speed is low, the zero bias repeatability error becomes the main source of the system measurement error.Using typical medium precision fiber optic gyro index, that is, zero bias stability is 0.5 °/h when sampling time is 1 s, Zero repeatability is 0.05 °/h. Compare the system measurement errors at the operating speed of 2 m/s, 1 m/s, 0.2 m/s, 0.1 m/s, 0.02 m/s, 0.01 m/s, 0.002 m/s and 0.001 m/s. When the operating speed is 2 m/s, The measurement error is 8.514μm (RMS), when the measurement speed is reduced to 0.2m /s, the measurement error is 34.089μm (RMS), when the measurement speed is reduced to 0.002m /s, the measurement error is 2246.222μm (RMS), as can be seen from the comparison results. The faster the running speed, the smaller the measuring error. Considering the convenience of engineering operation, the running speed of 2 m/s can achieve better than 10 μm measurement accuracy. 4 Summary Based on the simulation analysis of the engineering structure deformation measurement based on fiber optic gyro, the error model of fiber optic gyro is established, and the relationship between the deformation measurement error and the performance of fiber optic gyro is obtained by using the simple supported beam model as an example. The simulation results show that the faster the system runs, that is, the shorter the sampling time of the fiber optic gyroscope, the higher the deformation measurement accuracy of the system when the sampling number is unchanged and the distance detection accuracy is guaranteed. With the typical medium precision fiber optic gyro index and the running speed of 2 m/s, the deformation measurement accuracy of better than 10 μm can be achieved.Micro-Magic Inc GF-50 has a diameter of φ50*36.5mm and an accuracy of 0.1º/h. GF-60 precision 0.05º/h, belongs to the high tactical level of the fiber optic gyroscope, our company produced gyroscope with small size, light weight, low power consumption, fast start, simple operation, easy to use and other characteristics, widely used in INS, IMU, positioning system, north finding system, platform stability and other fields. If you are interested in our fiber optic gyro, please feel free to contact us. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
  • Research on Hybrid Integrated Optical Chip of Fiber Optic Gyro
    Research on Hybrid Integrated Optical Chip of Fiber Optic Gyro Jan 14, 2025
    Key Points Product: Integrated Optical Chip-Based Fiber Optic Gyroscope Key Features: Components: Uses an integrated optical chip combining functions like luminescence, beam splitting, modulation, and detection on a lithium niobate thin film (LNOI) platform. Function: Achieves “multi-in-one” integration of non-sensitive optical path functions, reducing size and production costs while enhancing polarization and phase modulation for accurate gyroscope performance. Applications: Suited for positioning, navigation, attitude control, and oil well inclination measurement. Optimization: Further improvements in polarization extinction ratio, emission power, and coupling efficiency can enhance stability and accuracy. Conclusion: This integrated design paves the way for miniaturized, low-cost fiber optic gyroscopes, meeting the growing demand for compact and reliable inertial navigation solutions. With the advantages of all-solid state, high performance and flexible design, fiber optic gyroscope has become the mainstream inertial gyroscope, which is widely used in many fields such as positioning and navigation, attitude control and oil well inclination measurement. Under the new situation, the new generation of inertial navigation system is developing towards miniaturization and low cost, which puts forward higher and higher requirements for the comprehensive performance of gyroscope such as volume, accuracy and cost. In recent years, hemispherical resonator gyro and MEMS gyro have developed rapidly with the advantage of small size, which has a certain impact on the fiber optic gyro market. The main challenge of traditional optical gyro volume reduction is the reduction of optical path volume. In the traditional scheme, the optical route of fiber optic gyro is composed of several discrete optical devices, each of which is realized based on different principles and processes and has independent packaging and pigtail. As a result, the device volume under the prior art is close to the reduction limit, and it is difficult to support the further reduction of the volume of fiber optic gyro. Therefore, it is urgent to explore new technical solutions to realize the effective integration of different functions of the optical path, greatly reduce the volume of the gyro optical path, improve the process compatibility, and reduce the production cost of the device. With the development of semiconductor integrated circuit technology, integrated optical technology has gradually achieved breakthroughs, and the feature size has been continuously reduced, and it has entered the micro and nano level, which has greatly promoted the technical development of integrated optical chips, and has been applied in optical communication, optical computing, optical sensing and other fields. The integrated optical technology provides a new and promising technical solution for the miniaturization and low cost of fiber optic gyro optical path. 1 Integrated optical chip scheme design 1.1 Overall Design The traditional optical routing light source (SLD or ASE), fiber taper coupler (referred to as “coupler”), Y branch waveguide phase modulator (referred to as “Y waveguide modulator”), detector, sensitive ring (fiber ring). Among them, the sensitive ring is the core unit of the sensitive Angle rate, and its volume size directly affects the precision of the gyro.We propose a hybrid integrated chip, which consists of a light source component, a multifunctional component and a detection component through hybrid integration. Among them, the light source part is an independent component, which is composed of SLD chip, isolation collimation component and peripheral components such as heat sink and semiconductor cooler. The detection module consists of a detection chip and a transresistance amplifier chip. The multifunctional module is the main body of hybrid integrated chip, which is realized based on lithium niobate thin film (LNOI) chip, and mainly includes optical waveguide, mode-spot conversion, polarizer, beam splitter, mode attenuator, modulator and other on-chip structures. The beam emitted by the SLD chip is transmitted into the LNOI waveguide after isolation and collimation.The polarizer deflects the input light, and the mode attenuator attenuates the non-working mode. After the beam splitter splits the beam and modulator modulates the phase, the output chip enters the sensitive ring and the sensitive angular rate. The light intensity is captured by the detector chip, and the generated photoelectric output flows through the transresistance amplifier chip to the demodulation circuit.The hybrid integrated optical chip has the functions of luminescence, beam splitting, beam combining, deflection, modulation, detection, etc. It realizes the “multi-in-one” integration of non-sensitive functions of gyro optical path. Fiber optic gyroscopes depend on the sensitive Angle rate of coherent beam with high degree of polarization, and the polarization performance directly affects the precision of gyroscopes. The traditional Y-waveguide modulator itself is an integrated device, which has the functions of deflection, beam splitting, beam combining and modulation. Thanks to material modification methods such as proton exchange or titanium diffusion, Y-waveguide modulators have extremely high deflection ability. However, thin film materials need to take into account the requirements of size, integration and deflection ability, which can not be met by material modification methods. On the other hand, the mode field of thin film optical waveguide is much smaller than that of bulk material optical waveguide, resulting in changes in electrostatic field distribution and electrorefractive index parameters, and the electrode structure needs to be redesigned. Therefore, the polarizer and modulator are the core design points of the “all-in-one” chip. 1.2 Specific Design The polarization characteristics are obtained by structural bias, and an on-chip polarizer is designed, which consists of curved waveguide and straight waveguideAgreed. The curved waveguide can limit the difference between the transmission mode and the non-transmission mode, and achieve the effect of mode bias. The transmission loss of the transmission mode is reduced by setting the offset.The transmission characteristics of optical waveguide are mainly affected by scattering loss, mode leakage, radiation loss and mode mismatch loss. Theoretically, the scattering loss and mode leakage of small curved waveguides are small, which are mainly limited by the late process. However, the radiation loss of curved waveguides is inherent and has different effects on different modes. The transmission characteristics of the curved waveguide are mainly affected by the mode mismatch loss, and there is mode overlap at the junction of the straight waveguide and the curved waveguide, resulting in a sharp increase in mode scattering. When the light wave is transmitted into the polarized waveguide, due to the existence of curvature, the effective refractive index of the light wave mode is different in the vertical direction and the parallel direction, and the mode restriction is different, which results in different attenuation effects for TE and TM modes.Therefore, it is necessary to design the bending waveguide parameters to achieve the deflection performance. Among them, bending radius is the key parameter of bending waveguide. The transmission loss under different bending radius and the loss comparison between different modes are calculated by FDTD eigenmode solver. The calculated results show that the loss of the waveguide decreases with the increase of the radius at small bending radius. On this basis, the relationship between polarization property (ratio of TE mode to TM mode) and bending radius is calculated, and the polarization property is inversely proportional to bending radius. The determination of the bending radius of the on-chip polarizer should consider the theoretical calculation, the simulation results, the technological capability and the actual demand.The finite difference Time domain (FDTD) is used to simulate the transmitted light field of the on-chip polarizer. The TE mode can pass through the waveguide structure with low loss, while the TM mode can produce obvious mode attenuation, so as to obtain polarized light with high extinction ratio. By increasing the number of cascaded waveguides, the extinction ratio of the polarization-extinction ratio can be further improved, and better than -35dB polarization extinction ratio performance can be obtained on the micron scale. At the same time, the structure of the waveguide on chip is simple, and it is easy to realize the low-cost fabrication of the device. 2 Integrated optical chip performance verification The LNOI main chip of the integrated optical chip is an unsliced sample engraved with multiple chip structures, and the size of a single LNOI main chip is 11mm×3mm. The performance test of integrated optical chip mainly includes the measurement of spectral ratio, polarization extinction ratio and half-wave voltage.Based on the integrated optical chip, a gyroscope prototype is built, and the performance test of the integrated optical chip is carried out. Static zero bias performance of a gyro prototype based on integrated optical chip in a non-vibration isolated foundation at room temperature. set-basedThe gyroscope formed into optical chip has a long time drift in the start-up segment, which is mainly caused by the start-up characteristic of light source and the large loss of optical link. In the 90min test, the zero bias stability of the gyroscope is 0.17°/h (10s). Compared with the gyroscope based on traditional discrete devices, the zero bias stability index deteriorates by an order of magnitude, indicating that the integrated optical chip needs to be further optimized. Main optimization directions: improve the polarization extinction ratio of the chip, improve the luminous power of the light-emitting chip, improve the end-coupling efficiency of the chip, and reduce the overall loss of the integrated chip. 3 Summary We propose an integrated optical chip based on LNOI, which can realize the integration of non-sensitive functions such as luminescence, beam splitting, beam combining, deflection, modulation and detection. The zero bias stability of the gyro prototype based on the integrated optical chip is 0.17°/h. Compared with the traditional discrete devices, the performance of the chip still has a certain gap, which needs to be further optimized and improved. We preliminarily explore the feasibility of fully integrated optical path functions except ring, which can maximize the application value of integrated optical chip in gyro, and meet the development needs of miniaturization and low cost of fiber optic gyro. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
  • Why is it Called Fiber Optic Gyroscope?
    Why is it Called Fiber Optic Gyroscope? Jan 14, 2025
    Key Points Product: Fiber Optic Gyroscope (FOG) Key Features: Components: Solid-state sensor using optical fiber for precise inertial measurements. Function: Leverages the SAGNAC effect for accurate angular rate sensing without moving parts. Applications: Suitable for IMUs, INS, missile seekers, UAVs, and robotics. Data Fusion: Combines FOG data with external references to enhance accuracy and stability. Conclusion: FOGs provide high precision and reliability in navigation tasks, with promising future developments across various sectors. Like ring laser gyro, fiber optic gyro has the advantages of no mechanical moving parts, no preheating time, insensitive acceleration, wide dynamic range, digital output and small size. In addition, fiber optic gyro also overcomes the fatal shortcomings of ring laser gyro such as high cost and blocking phenomenon. Fiber optic gyro is a kind of optical fiber sensor used in inertial navigation.Because it has no moving parts – high-speed rotor, called solid state gyroscope. This new all-solid gyroscope will become the leading product in the future and has a wide range of development prospects and application prospects. 1. Fiber optic gyro classification According to the working principle, fiber optic gyroscope can be divided into interferometric fiber optic gyro (I-FOG), resonant fiber optic gyro (R-FOG) and stimulated Brillouin scattering fiber optic gyroscope (B-FOG). At present, the most mature fiber optic gyro is the interferometric fiber optic gyroscope (that is, the first generation of fiber optic gyroscope), which is the most widely used. It uses multi-turn optical fiber coil to enhance SAGNAC effect. A double-beam ring interferometer composed of multi-turn single-mode optical fiber coil can provide high accuracy, but also will inevitably make the overall structure more complicated.Fiber optic gyros are divided into open ring fiber optic gyroscopes and closed loop fiber optic gyros according to the type of loop. Open-loop fiber optic gyro without feedback, directly detect the optical output, save many complex optical and circuit structure, has the advantages of simple structure, cheap price, high reliability, low power consumption, the disadvantage is the input-output linearity is poor, small dynamic range, mainly used as an Angle sensor. The basic structure of an open-loop interferometric fiber optic gyro is a ring dual-beam interferometer. It is mainly used for occasions where the accuracy is not high and the volume is small. 2. Status and future of fiber optic gyroscope With the rapid development of fiber optic gyro, many large companies, especially military equipment companies, have invested huge financial resources to study it. The main research companies for the United States, Japan, Germany, France, Italy, Russia, low and medium precision gyroscope has completed the industrialization, and the United States has maintained a leading position in this area of research.The development of fiber optic gyroscope is still at a relatively backward level in our country. According to the level of development, the gyro development is divided into three echelons: the first echelon is the United States, the United Kingdom, France, they have all the gyro and inertial navigation research and development capabilities; The second tier is mainly Japan, Germany, Russia; China is currently in the third tier. The research of fiber optic gyro in China started relatively late, but with the efforts of the majority of scientific researchers, it has gradually narrowed the gap between us and the developed countries.At present, China’s fiber optic gyro industry chain is complete, and manufacturers can be found upstream and downstream of the industry chain, and the development accuracy of fiber optic gyro has reached the requirements of middle and low accuracy of inertial navigation system. Although the performance is relatively poor, it will not bottleneck like the chip.The future development of fiber optic gyro will focus on the following aspects:(1) High precision. Higher precision is an inevitable requirement for fiber optic gyro to replace laser gyro in advanced navigation. At present, the high precision fiber optic gyro technology is not fully mature.(2) High stability and anti-interference. Long-term high stability is also one of the development directions of fiber optic gyroscope, which can maintain navigation accuracy for a long time under harsh environment is the requirement of inertial navigation system for gyroscope. For example, in the case of high temperature, strong earthquake, strong magnetic field, etc., the fiber optic gyro must also have sufficient accuracy to meet the requirements of users.(3) Product diversification. It is necessary to develop products with different precision and different needs. Different users have different requirements for navigation accuracy, and the structure of the fiber optic gyro is simple, and only the length and diameter of the coil need to be adjusted when changing the accuracy. In this respect, it has the advantage of surpassing mechanical gyro and laser gyro, and its different precision products are easier to achieve, which is the inevitable requirement of the practical application of fiber optic gyro.(4) Production scale. The reduction of cost is also one of the preconditions for fiber optic gyro to be accepted by users. The production scale of various components can effectively promote the reduction of production costs, especially for middle and low precision fiber optic gyro. 3.Summary The zero bias stability of the fiber optic gyroscope F50 is 0.1~0.3º/h, and the zero bias stability of the F60 is 0.05~0.2º/h. Their application fields are basically the same, and can be used in small IMU, INS, missile seeker servo tracking, photoelectric pod, UAV and other application fields. If you want more technical data, please feel free to contact us. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
Subscibe To Newsletter
Please read on, stay posted, subscribe, and we welcome you to tell us what you think.
f y

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact Us