Home

Blog

Applications

  • Analysis of MEMS Gyroscope Drive Mode Control Loop
    Analysis of MEMS Gyroscope Drive Mode Control Loop Jan 10, 2025
    Key Points Product: Pure Inertial Navigation System (INS) Based on IMU Key Features: Components: Uses MEMS accelerometers and gyroscopes for real-time measurement of acceleration and angular velocity. Function: Integrates initial position and attitude data with IMU measurements to calculate real-time position and attitude. Applications: Ideal for indoor navigation, aerospace, autonomous systems, and robotics. Challenges: Addresses sensor errors, cumulative drift, and dynamic environment impacts with calibration and filtering methods. Conclusion: Provides precise positioning in challenging environments, with robust performance when combined with auxiliary positioning systems like GPS.   MEMS gyroscope is dependent on Coriolis force sensitive angular velocity, and its control system is divided into drive mode control loop and detection mode control loop. Only by ensuring the real-time tracking of drive mode vibration amplitude and resonant frequency can the detection channel demodulation obtain accurate input angular velocity information. This paper will analyze the driving mode control loop of MEMS gyro from many aspects. Drive modal control loop model The vibration displacement of the MEMS gyroscope drive mode is converted into capacitance change through the comb capacitor detection structure, and then the capacitance is converted into the voltage signal characterizing the gyroscope drive displacement through the ring diode circuit. After that, the signal will enter two branches respectively, one signal through the automatic gain control (AGC) module to achieve amplitude control, one signal through the phase locked loop (PLL) module to achieve phase control. In the AGC module, the amplitude of the drive displacement signal is first demodulated by multiplication and low-pass filter, and then the amplitude is controlled at the set reference value through the PI link and the control signal of the drive amplitude is output. The reference signal used for multiplication demodulation in the PLL module is orthogonal to the demodulation reference signal used in the AGC module. After the signal passes through the PLL module, the driving resonant frequency of the gyroscope can be tracked. The output of the module is the control signal of the driving phase. The two control signals are multiplied to generate the gyroscope drive voltage, which is applied to the drive comb and converted into electrostatic driving force to drive the gyroscope drive mode, so as to form a closed-loop control loop of the gyroscope drive mode. Figure 1 shows the drive mode control loop of a MEMS gyroscope. Figure 1. MEMS gyroscope drive mode control structure block diagram Drive modal transfer function According to the dynamic equation of the driving mode of the vibrating MEMS gyroscope, the continuous domain transfer function can be obtained by Laplace transform: Where, mx is the equivalent mass of the gyroscope drive mode, ωx=√kx/mx is the resonant frequency of the drive mode, and Qx = mxωx/cx is the quality factor of the drive mode. Displacement-capacitance conversion link According to the analysis of the detection capacitance of the comb teeth, the displacement-capacitance conversion link is linear when the edge effect is ignored, and the gain of the differential capacitance changing with the displacement can be expressed as: Where, nx is the number of active combs driven by gyroscopic mode, ε0 is the vacuum dielectric constant, hx is the thickness of the driving detection combs, lx is the overlap length of the driving detection active and fixed combs at rest, and dx is the distance between the teeth. Capacitance-voltage conversion link The capacitor-voltage conversion circuit used in this paper is a ring diode circuit, and its schematic diagram is shown in Figure 2. Figure 2 Schematic diagram of ring diode circuit In the figure, C1 and C2 are gyroscope differential detection capacitors, C3 and C4 are demodulation capacitors, and Vca are square wave amplitudes. The working principle is: when the square wave is in the positive half cycle, the diode D2 and D4 are switched on, then the capacitor C1 charges C4 and C2 charges C3; When the square wave is in positive half period, the diodes D1 and D3 are switched on, then the capacitor C1 discharges to C3 and C2 discharges to C4. In this way, after several square wave cycles, the voltage on the demodulated capacitors C3 and C4 will stabilize. Its voltage expression is: For the silicon micromechanical gyroscope studied in this paper, its static capacitance is in the order of several pF, and the capacitance variation is less than 0.5pF, while the demodulation capacitance used in the circuit is in the order of 100 pF, so there are CC0》∆C and C2》∆C2, and the capacitor voltage conversion gain is obtained by simplified formula: Where, Kpa is the amplification factor of the differential amplifier, C0 is the demodulation capacitance, C is the static capacitance of the detection capacitance, Vca is the carrier amplitude, and VD is the on-voltage drop of the diode. Capacitance-voltage conversion link Phase control is an important part of MEMS gyroscope drive control. The phase-locked loop technology can track the frequency change of the input signal in its captured frequency band and lock the phase shift. Therefore, this paper uses the phase-locked loop technology to enter the phase control of the gyroscope, and its basic structure block diagram is shown in Figure 3. Figure. 3 Block diagram of the basic structure of PLL PLL is a negative feedback phase automatic regulation system, its working principle can be summarized as follows: The external input signal ui(t) and the feedback signal uo(t) output of the VCO are input to the phase discriminator at the same time to complete the phase comparison of the two signals, and the output end of the phase discriminator outputs an error voltage signal ud(t) reflecting the phase difference θe(t) of the two signals; The signal through the loop filter will filter out the high-frequency components and noise, get a voltage control oscillator uc(t), the voltage control oscillator will adjust the frequency of the output signal according to this control voltage, so that it gradually closer to the frequency of the input signal, and the final output signal uo(t), When the frequency of ui(t) is equal to uo(t) or a stable value, the loop reaches a locked state. Automatic gain control Automatic gain control (AGC) is a closed-loop negative feedback system with amplitude control, which, combined with phase-locked loop, provides amplitude and phase stable vibration for the gyroscope drive mode. Its structure diagram is shown in Figure 4. Figure 4. Automatic gain control structure block diagram The working principle of automatic gain control can be summarized as follows: the signal ui(t) with the gyroscope drive displacement information is input to the amplitude detection link, the drive displacement amplitude signal is extracted by multiplication demodulation, and then the high-frequency component and noise are filtered by low-pass filter; At this time, the signal is a relatively pure DC voltage signal that characterizes the drive displacement, and then controls the signal at the given reference value through a PI link, and outputs the electric signal ua(t) that controls the drive amplitude to complete the amplitude control. Conclusion In this paper, the driving mode control loop of MEMS gyro is introduced, including model, dislock-capacitance conversion, capacitance-voltage conversion, phase-locked loop and automatic gain control. As a manufacturer of MEMS gyro sensor, Micro-Magic Inc has done detailed research on MEMS gyros, and often popularized and shared the relevant knowledge of MEMS gyro. For a deeper understanding of MEMS gyro, you can refer to the parameters of MG-501 and MG1001. If you are interested in more knowledge and products of MEMS, please contact us.   MG502 MEMS Gyroscope MG502      
  • Comparison Of Technical Specifications Of Navigation Grade MEMS Gyroscope
    Comparison Of Technical Specifications Of Navigation Grade MEMS Gyroscope Jan 10, 2025
    Key Points Product: Navigation-Grade MEMS Gyroscope Key Features: Components: MEMS gyroscope for precise angular velocity measurement. Function: Provides high-accuracy navigation data with low drift, suitable for long-term and stable navigation. Applications: Ideal for aerospace, tactical missile guidance, marine navigation, and industrial robotics. Performance: Features low bias instability and random drift, offering reliable performance over time. Comparison: Different models (MG-101, MG-401, MG-501) cater to varying accuracy needs, with the MG-101 providing the highest precision. MEMS gyroscope is a kind of inertial sensor for measuring angular velocity or angular displacement. It has a wide application prospect in oil logging, weapon guidance, aerospace, mining, surveying and mapping, industrial robot and consumer electronics. Due to the different accuracy requirements in various fields, MEMS gyroscopes are divided into three levels in the market: navigation level, tactical level and consumer level. This paper will introduce the navigation MEMS gyroscope in detail and compare their parameters. The following will be elaborated from the technical indicators of MEMS gyro, the drift analysis of gyro and the comparison of three navigation-grade MEMS gyro. Technical specifications of MEMS gyroscope The ideal MEMS gyroscope is that the output of its sensitive axis is proportional to the input angular parameters (Angle, angular rate) of the corresponding axis of the carrier under any conditions, and is not sensitive to the angular parameters of its cross axis, nor is it sensitive to any axial non-angular parameters (such as vibration acceleration and linear acceleration). The main technical indicators of MEMS gyroscope are shown in Table 1. Technical indicator Unit Meaning Measuring range (°)/s Effectively sensitive to the range of input angular velocity Zero bias (°)/h The output of a gyroscope when the input rate in the gyroscope is zero. Because the output is different, the equivalent input rate is usually used to represent the same type of product, and the smaller the zero bias, the better; Different models of products, not the smaller the zero bias, the better. Bias repeatability (°)/h(1σ) Under the same conditions and at specified intervals (successive, daily, every other day…) The degree of agreement between the partial values of repeated measurements. Expressed as the standard deviation of each measured offset. Smaller is better for all gyroscopes (evaluate how easy it is to compensate for zero) Zero drift (°)/s The rate of time change of the deviation of the gyroscope output from the ideal output. It contains both stochastic and systematic components and is expressed in terms of the corresponding input angular displacement relative to inertial space in unit time. Scale factor V/(°)/s、mA/(°)/s The ratio of the change in the output to the change in the input to be measured. Bandwidth Hz In the frequency characteristic test of gyroscope, it is stipulated that the frequency range corresponding to the amplitude of the measured amplitude is reduced by 3dB, and the precision of the gyroscope can be improved by sacrificing the bandwidth of the gyroscope. Table 1 Main technical indexes of MEMS gyroscope Drift analysis of gyroscope If there is interference torque in the gyroscope, the rotor shaft will deviate from the original stable reference azimuth and form an error. The deviation Angle of rotor axis relative to inertial space azimuth (or reference azimuth) in unit time is called gyro drift rate. The main index to measure the accuracy of gyroscope is the drift rate. Gyroscopic drift is divided into two categories: one is systematic, the law is known, it causes regular drift, so it can be compensated by computer; The other kind is caused by random factors, which causes random drift. The systematic drift rate is expressed by the angular displacement per unit time, and the random drift rate is expressed by the root mean square value of the angular displacement per unit time or the standard deviation. The approximate range of random drift rates of various types of gyroscopes can be reached at present is shown in Table 2. Gyroscope type Random drift rate/(°)·h-1 Ball bearing gyroscope 10-1 Rotary bearing gyroscope 1-0.1 Liquid float gyroscope 0.01-0.001 Air float gyroscope 0.01-0.001 Dynamically tuned gyroscope 0.01-0.001 Electrostatic gyroscope 0.01-0.0001 Hemispherical resonant gyroscope 0.1-0.01 Ring laser gyroscope 0.01-0.001 Fiber optic gyroscope 1-0.1 Table 2 Random drift rates of various types of gyroscopes   The approximate range of random drift rate of gyro required by various applications is shown in Table 3. The typical index of positioning accuracy of inertial navigation system is 1n mile/h(1n mile=1852m), which requires the gyroscope random drift rate should reach 0.01(°)/h, so the gyroscope with random drift rate of 0.01(°)/h is usually called inertial navigation gyroscope. Application Requirements for random drift rate of gyro/(°)·h-1 Rate gyroscope in flight control system 150-10 Vertical gyroscope in flight control system 30-10 Directional gyroscope in the flight control system 10-1 Tactical missile inertial guidance system 1-0.1 Marine gyro compass, strapdown heading attitude system artillery lateral position, ground vehicle inertial navigation system 0.1-0.01 Inertial navigation systems for aircraft and ships 0.01-0.001 Strategic missile, cruise missile inertial guidance system 0.01-0.0005 Table 3 Requirements for random drift rate of gyro in various applications   Comparison of three navigation-grade MEMS gyroscopes Micro-Magic Inc’s MG series is a navigation-grade MEMS gyroscope with a high level of accuracy to meet the needs of various fields. The following table compares range, bias instability, angular random walk, bias stability, scale factor, bandwidth, and noise.   MG-101 MG-401 MG-501 Dynamic Range (deg/s) ±100 ±400 ±500 Bias instability(deg/hr) 0.1 0.5 2 Angular Random Walk(°/√h) 0.005 0.025~0.05 0.125-0.1 Bias stability(1σ 10s)(deg/hr) 0.1 0.5 2~5 Table 4 Parameter comparison table of three navigation-grade MEMS gyroscopes I hope that through this article, you can understand the technical indicators of navigation-grade MEMS gyroscope and the comparative relationship between them. If you are interested in more knowledge about MEMS gyro, please discuss with us.   MG502 MEMS Gyroscope MG502    
  • Effect of Low Pressure Environment on Quartz Flexible Accelerometer
    Effect of Low Pressure Environment on Quartz Flexible Accelerometer Jan 10, 2025
    Key Points Product: Quartz Flexure Accelerometer Key Features: Components: Employs quartz flexure technology for high sensitivity and low noise in measuring acceleration. Function: Suitable for both static and dynamic acceleration measurements, with minimal impact from low-pressure environments. Applications: Ideal for monitoring micro-vibration in spacecraft orbits and applicable in inertial navigation systems. Performance Analysis: Demonstrates negligible scale factor changes (less than 0.1%) in vacuum conditions, ensuring accuracy and reliability. Conclusion: Offers robust performance for long-term on-orbit applications, making it suitable for high-precision aerospace requirements. The quartz flexure accelerometer has the characteristics of high sensitivity and low noise, making it suitable for measuring both static and dynamic acceleration. It can be used as an acceleration-sensitive sensor for monitoring micro-vibration environments in spacecraft orbits. This article mainly introduces effect of low pressure environment on quartz flexible accelerometer. The sensitive diaphragm of the quartz accelerometer experiences membrane damping effects when in motion in the air environment, which could potentially cause changes in the sensor’s performance (scale factor and noise) in low-pressure environments. This could affect the accuracy and precision of measuring on-orbit micro-vibration acceleration. Therefore, it is necessary to analyze this effect and provide a feasibility analysis conclusion for the long-term use of quartz flexible accelerometers in high vacuum environments. Fig.1 Quartz Accelerometers In Spacecraft Orbits 1.Damping analysis in low-pressure environments The longer the quartz flexure accelerometer operates in orbit, the more air leakage occurs inside the package, resulting in lower air pressure until it reaches equilibrium with the space vacuum environment. The average free path of air molecules will continuously lengthen, approaching or even exceeding 30μm, and the airflow state will gradually transition from viscous flow to viscous-molecular flow. When the pressure drops below 102Pa, it enters the molecular flow state. The air damping becomes smaller and smaller, and in the molecular flow state, the air damping is almost zero, leaving only electromagnetic damping for the quartz flexible accelerometer diaphragm. For quartz flexure accelerometers that need to operate for a long time in low-pressure or vacuum environments in space, if there is significant gas leakage within the required mission life, the membrane damping coefficient will significantly decrease. This will change the characteristics of the accelerometer, making scattered free vibrations ineffective in attenuation. Consequently, the scale factor and noise level of the sensor may change, potentially affecting measurement accuracy and precision. Therefore, it is necessary to conduct feasibility tests on the performance of quartz flexible accelerometers in low-pressure environments, and compare the test results to assess the extent of the impact of low-pressure environments on the measurement accuracy of quartz flexible accelerometers. 2.Impact of low-pressure environments on the scale factor of quartz flexure accelerometers Based on the analysis of the working principles and application environments of quartz flexible accelerometer products, it is known that the product is encapsulated with 1 atmosphere pressure, and the application environment is a low Earth orbit vacuum environment (vacuum degree approximately 10-5 to 10-6Pa) at a distance of 500km from the ground. Quartz flexible accelerometers typically use epoxy resin sealing technology, with a leakage rate generally guaranteed to be 1.0×10-4Pa·L/s. In a vacuum environment, the internal air will slowly leak out, with the pressure dropping to 0.1 atmosphere pressure (viscous-molecular flow) after 30 days, and dropping to 10-5Pa (molecular flow) after 330 days. The impact of air damping on quartz flexure accelerometers mainly manifests in two aspects: the impact on the scale factor and the impact on noise. According to design analysis, the impact of air damping on the scale factor is approximately 0.0004 (when the pressure drops to vacuum, there is no air damping). The calculation and analysis process is as follows: The quartz flexure accelerometer uses the gravity tilt method for static calibration. In the accelerometer’s pendulum assembly, in an environment with air, the normal force on the pendulum assembly is: mg0, and the buoyant force fb is: ρVg0. The electromagnetic force on the pendulum is equal to the difference between the force it experiences due to gravity and the buoyant force, expressed as: f=mg0-ρVg0 Where: m is the mass of the pendulum, m=8.12×10−4 kg. ρ is the density of dry air, ρ=1.293 kg/m³. V is the volume of the moving part of the pendulum assembly, V=280 mm³. g0 is the gravitational acceleration, g0=9.80665 m/s². The percentage of the buoyant force to the gravitational force on the pendulum assembly itself is: ρVg0/mg0=ρV/m≈0.044% In a vacuum environment, when the air density is approximately zero due to gas leakage causing the pressure inside and outside the instrument to balance, the change in scale factor of the quartz flexible accelerometer is 0.044%. 3.Conclusion: Low-pressure environments can affect the scale factor and noise of the quartz flexible accelerometer. Through calculation and analysis, it’s shown that the maximum impact of the vacuum environment on the scale factor is not more than 0.044%. Theoretical analysis indicates that the influence of low-pressure environments on the sensor’s scale factor is less than 0.1%, with minimal impact on measurement accuracy, which can be neglected. This demonstrates that low-pressure or vacuum environments have minimal effects on the scale factor and noise of the quartz flexure accelerometer, making it suitable for long-term on-orbit applications. It’s worth noting that the AC7 series quartz flexible accelerometers are designed specifically for aerospace applications. Among them, the AC7 has the highest precision, with zero bias repeatability ≤20μg, a scale factor of 1.2mA/g, and scale factor repeatability ≤20μg. It is fully suitable for monitoring micro-vibration environments of spacecraft in orbit. Additionally, it can be applied to inertial navigation systems and static angle measurement systems with high precision requirements.   AC-5 Low Deviation Error Accelerometer Quartz Vibration Sensor for Imu Ins    
  • Fiber Optic Gyroscopes for Inertial Navigation
    Fiber Optic Gyroscopes for Inertial Navigation Jan 13, 2025
    Key Points   Product: Fiber Optic Gyroscope GF70ZK Key Features: Components: Employs fiber optic gyroscopes for high precision inertial measurements. Function: Provides rapid start-up and reliable navigation data for various applications. Applications: Suitable for inertial navigation systems, platform stability, and positioning systems in aerospace and autonomous vehicles. Performance: Zero bias stability between 0.01 and 0.02, tailored for accuracy and measurement range needs. Conclusion: The GF70ZK combines compact size and low power consumption, making it a versatile choice for demanding navigation tasks across multiple industries. 1. What is inertial navigation To understand what inertial navigation is, we first need to break the phrase into two parts, that is, navigation + inertia.Navigation, in simple terms, solves the problem of getting from one place to another, indicating the direction, typically the compass.Inertia, originally derived from Newtonian mechanics, refers to the property of an object that maintains its state of motion. It has the function of recording the motion state information of the object.A simple example is used to illustrate inertial navigation. A child and a friend play a game at the entrance of a room covered with tiles, and walk on the tiles to the other side according to certain rules. One forward, three left, five front, two right… Each of his steps is the length of a floor tile, and people outside the room can get his complete motion trajectory by drawing the corresponding length and route on the paper. He doesn’t need to see the room to know the child’s position, speed, etc.The basic principle of inertial navigation and some other types of navigation is pretty much like this: know your initial position, initial orientation (attitude), the direction and direction of movement at each moment, and push forward a little bit. Add these together (corresponding to the mathematical integration operation), and you can just get your orientation, position and other information.So how to get the current orientation (attitude) and position information of the moving object? You need to use a lot of sensors, in inertial navigation is the use of inertial instruments: accelerometer + gyroscope.Inertial navigation uses gyroscope and accelerometer to measure the angular velocity and acceleration of the carrier in the inertial reference frame, and integrates and calculates the time to obtain the velocity and relative position, and transforms it into the navigation coordinate system, so that the carrier’s current position can be obtained by combining the initial position information.Inertial navigation is an internal closed loop navigation system, and there is no external data input to correct the error during the carrier movement. Therefore, a single inertial navigation system can only be used for short periods of navigation. For the system running for a long time, it is necessary to periodically correct the internal accumulated error by means of satellite navigation. 2. Gyroscopes in inertial navigation Inertial navigation technology is widely used in aerospace, navigation satellite, UAV and other fields because of its high concealment and complete autonomous ability to obtain motion information. Especially in the fields of micro-drones and autonomous driving, inertial navigation technology can provide accurate direction and speed information, and can play an irreplaceable role in complex conditions or when other external auxiliary navigation signals fail to play the advantages of autonomous navigation in the environment to achieve reliable attitude and position measurement. As an important component in inertial navigation system, fiber optic gyro plays a decisive role in its navigation ability. At present, there are mainly fiber optic gyroscopes and MEMS gyroscopes on the market. Although the precision of the fiber optic gyroscope is high, its entire system is composed of couplers,modulator, optical fiber ring and other discrete components, resulting in large volume, high cost, in the micro UAV, unmanned and other fields can not meet the requirements for its miniaturization and low cost, the application is greatly limited. Although MEMS gyro can achieve miniaturization, its accuracy is low. In addition, it has moving parts, poor resistance to shock and vibration, and is difficult to apply in harsh environments. 3 Summary Micro-Magic Inc’s fiber optic gyroscope GF70ZK is specially designed according to the concept of traditional fiber optic gyroscopes, with a small size of 70*70*32mm; Light weight, less than or equal to 250g; Low power consumption, less than or equal to 4W; Start fast, start time is only 5s; This fiber optic gyroscope easy to operate and easy to use, and is widely used in INS, IMU, positioning system, north finding system, platform stability and other fields.The zero bias stability of our GF80 is between 0.01 and 0.02. The biggest difference between these two fiber optic gyroscope is that the measurement range is different, of course, Our fiber optic gyroscope can be used in inertial navigation, you can make a detailed choice according to the accuracy value and measurement range, you are welcome to consult us at any time and get more technical data. GF70ZK Fibre Optic Gyroscope Sensors North Finder Navigation Inertial Navigation Attitude/Azimuth Reference System   G-F80 Miniature Fiber Optic Gyro Sensors 80mm Compact Size  
  • How Do High Temperature Accelerometers Work?
    How Do High Temperature Accelerometers Work? Jan 13, 2025
    Key Points Product: High Temperature Accelerometers Key Features: Components: Designed with advanced materials and technologies, such as amorphous quartz structures for enhanced stability. Function: Provide reliable and accurate data in extreme environments, crucial for safety and performance. Applications: Essential in oil & gas (MWD systems), aerospace (structural monitoring), automotive testing (crash and performance assessments), and various industrial sectors. Data Integrity: Capable of operating under high temperatures and vibrations, ensuring continuous performance and minimal downtime. Conclusion: High temperature accelerometers are vital for industries operating in harsh conditions, enhancing efficiency and safety with precise measurements. Reliability is crucial for success in the challenging oil and gas industry, where risks are frequent and can significantly impact opportunities. Dependable, precise data can determine whether a venture succeeds or fails. Ericco has been supplying robust sensing products to the global oil and gas sector, proving their exceptional reliability and accuracy in some of the world’s most demanding environments. 1.What are high temperature accelerometers? High temperature accelerometers are designed to withstand harsh conditions and provide accurate data in demanding industries such as aerospace and oil & gas. Essentially, their purpose is to function effectively in challenging environments, including underground settings and extreme temperatures. Manufacturers of high temperature accelerometers employ specific technologies to ensure the sensors’ reliability in extreme conditions. For instance, Micro-Magic Incs Quartz Accelerometer for Oil and Gas is proved to own high performance. This model utilizes an amorphous quartz proof-mass structure that reacts to acceleration through flexure motion, ensuring excellent stability in bias, scale factor, and axis alignment. 2.How are high temperature accelerometers used? High temperature accelerometers are vital in industries where equipment must endure extreme conditions. Their robust design and advanced technology enable them to operate reliably in harsh environments, providing crucial data that enhances safety, efficiency, and performance. Here’s a closer look at their applications and significance: 2.1 Oil & Gas Industry In the oil & gas industry, high temperature accelerometers are essential components of Measurement While Drilling (MWD) systems. MWD is a well logging technique that uses sensors within the drillstring to provide real-time data, guiding the drill and optimizing drilling operations. These accelerometers can withstand the intense heat, shock, and vibrations encountered deep underground. By delivering accurate measurements, they help. Optimize Drilling Operations: Provide precise data on the drill bit’s orientation and position, aiding in efficient and accurate drilling. Enhance Safety: Detect vibrations and shocks that could indicate potential issues, allowing for timely intervention and prevention of accidents. Improve Efficiency: Reduce downtime by providing continuous, reliable data that helps prevent operational failures and costly interruptions. Fig.1 High Temperature Accelerometers 2.2 Aerospace In the aerospace industry, high temperature accelerometers are used to monitor the performance and structural integrity of aircraft. They can endure the extreme conditions of flight, including high temperatures and intense vibrations, and are crucial for Structural Health Monitoring: Measure vibrations and stresses on aircraft components, ensuring they remain within safe limits. Engine Performance: Monitor vibrations in aircraft engines to detect anomalies and prevent engine failures. Flight Testing: Provide accurate data on aircraft dynamics during test flights, aiding in the development and refinement of aircraft designs. 2.3 Automotive Testing In automotive testing, high temperature accelerometers are employed to measure vehicle dynamics and structural integrity under extreme conditions. They are particularly useful for: Crash Testing: Monitor acceleration and deceleration forces during crash tests to evaluate vehicle safety and crashworthiness.High-Performance Testing: Measure vibrations and stresses in high-performance vehicles to ensure components can withstand extreme driving conditions.Durability Testing: Assess the long-term durability of automotive components by subjecting them to prolonged high temperatures and vibrations. 2.4 Industrial Applications Beyond oil & gas, aerospace, and automotive industries, high temperature accelerometers are also used in various other industrial applications where equipment operates in extreme conditions. These include: Power Generation: Monitor vibrations in turbines and other equipment to ensure optimal performance and prevent failures.Manufacturing: Measure vibrations and stresses in heavy machinery to maintain operational efficiency and safety.Robotics: Provide precise data on the movements and stresses experienced by robots operating in high-temperature environments, such as those used in welding or foundries. 3.Micro-Magic Inc's High Temperature Accelerometers Micro-Magic Inc has excelled in designing and manufacturing high-temperature accelerometers that meet the demanding requirements of these industries. We offer solutions tailored for energy exploration and other high-temperature applications. These accelerometers feature: Analog Output: For easy integration with existing systems.Mounting Options: Square or round flanges to suit different installation needs.Field-Adjustable Range: Allowing customization to specific application requirements.Internal Temperature Sensors: For thermal compensation, ensuring accurate measurements despite temperature variations. What’s more, Micro-Magic Inc’s Quartz Accelerometer for Oil and Gas is proved to own high performance. This model utilizes an amorphous quartz proof-mass structure that reacts to acceleration through flexure motion, ensuring excellent stability in bias, scale factor, and axis alignment. Some high temperature accelerometers also incorporate external amplifiers to safeguard the sensor from heat damage. And we recommend the AC1 for oil and gas, whose operating temperature is -55 ~ +85 ℃, with an input range of ±50g, bias repeatability <30μg, and scale factor repeatability <50 ppm. 4.Conclusion High temperature accelerometers are indispensable in industries that operate under extreme conditions. Their ability to provide reliable and accurate data in such environments enhances operational efficiency, safety, and performance. With advancements in technology, these sensors continue to evolve, offering even greater reliability and precision in the most demanding applications. AC1 Navigation Class Level Quartz Flexible Accelerometer With Measurement Range 50G Excellent Long-Term Stability And Repeatability   AC2 50 G Quartz Flexure Accelerometer Quartz Pendulous Accelerometers Inertial Navigation  
  • How does Tactical Fiber Optic Gyroscope Work?
    How does Tactical Fiber Optic Gyroscope Work? Jan 13, 2025
    Key Points Product: Fiber Optic Gyroscope (FOG) Key Features: Components: Based on optical fiber coils, utilizing the Sagnac effect for precise angular displacement measurements. Function: Offers high sensitivity and accuracy, ideal for determining orientation in moving objects. Applications: Widely used in military (e.g., missile guidance, tank navigation) and expanding into civilian sectors (e.g., automotive navigation, surveying). Data Fusion: Combines inertial measurements with advanced microelectronics for enhanced precision and stability. Conclusion: The fiber optic gyroscope is pivotal for high-precision navigation, with promising growth potential across diverse applications. Fiber optic gyroscope industry market With its unique advantages, fiber optic gyroscope has a broad development prospect in the field of precision physical quantity measurement. Therefore, exploring the influence of optical devices and physical environment on the performance of fiber optic gyros and suppressing the relative intensity noise have become the key technologies to realize the high precision fiber optic gyro. With the deepening of research, the integrated fiber gyroscope with high precision and miniaturization will be greatly developed and applied. Fiber optic gyroscope is one of the mainstream devices in the field of inertia technology at present. With the improvement of technical level, the application scale of fiber optic gyro will continue to expand. As the core component of fiber optic gyros, the market demand will also grow. At present, China’s high-end optical fiber ring still needs to be imported, and under the general trend of domestic substitution, the core competitiveness of China’s optical fiber ring enterprises and independent research and development capabilities still need to be further enhanced. At present, the optical fiber ring is mainly used in the military field, but with the expansion of the application of optical fiber gyroscope to the civilian field, the application proportion of optical fiber ring in the civilian field will be further improved. According to the "2022-2027 China Fiber Optic Gyroscope industry Market Survey and Investment Advice Analysis Report" : The fiber optic gyroscope is a sensitive element based on the optical fiber coil, and the light emitted by the laser diode propagates along the optical fiber in two directions. The difference of light propagation path determines the angular displacement of the sensitive element. Modern fiber optic gyro is an instrument that can accurately determine the orientation of moving objects. It is an inertial navigation instrument widely used in modern aviation, navigation, aerospace and national defense industries. Its development is of great strategic significance to a country’s industry, national defense and other high-tech development.Fiber optic gyro is a new all-solid-state fiber optic sensor based on Sagnac effect. Fiber optic gyro can be divided into interferometric fiber optic gyros (I-FOG), resonant fiber optic gyro (R-FOG) and stimulated Brillouin scattering fiber optic gyro (B-FOG) according to its working mode. According to its accuracy, fiber optic gyro can be divided into: low-end tactical level, high-end tactical level, navigation level and precision level. Fiber optic gyroscopes can be divided into military and civilian according to their openness. At present, most fiber optic gyros are used in military aspects: fighter and missile attitude, tank navigation, submarine heading measurement, infantry fighting vehicles and other fields. Civil use is mainly automobile and aircraft navigation, bridge surveying, oil drilling and other fields.Depending on the accuracy of the fiber optic gyroscope, its applications range from strategic weapons and equipment to commercial grade civilian fields. Medium and high-precision fiber optic gyroscopes are mainly used in high-end weapons and equipment fields such as aerospace, while low-cost, low-precision fiber optic gyroscopes are mainly used in oil exploration, agricultural aircraft attitude control, robots and many other civilian fields with low precision requirements. With the development of advanced microelectronics and optoelectronics technologies, such as photoelectric integration and the development of special fiber optics for fiber optic gyros, the miniaturization and low-cost of fiber optic gyros have been accelerated. Summary Micro-Magic Inc’s fiber optic gyro is mainly a medium precision tactical fiber optic gyro, compared with other manufacturers, low cost, long service life, the price is very dominant, and the application field is also very wide, including two very hot selling GF50, GF-60, you can click the details page for more technical data. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
  • How to Improve the Performance of MEMS Inertial Navigation Systems?
    How to Improve the Performance of MEMS Inertial Navigation Systems? Jan 13, 2025
    Key Points Product: GNSS/MEMS INS Integrated Navigation System Key Features: Components: Combines MEMS inertial sensors with GNSS receivers for enhanced navigation capabilities. Function: Provides high-frequency updates and accurate position, speed, and attitude information by integrating inertial data with GNSS corrections. Applications: Ideal for drones, flight recorders, intelligent unmanned vehicles, and underwater vehicles. Data Fusion: Utilizes Kalman filtering to merge GNSS data with MEMS INS data, correcting accumulated errors and improving overall accuracy. Conclusion: This integrated system leverages the strengths of both technologies to enhance navigation performance and reliability, with wide-ranging applications across various industries. With the development of MEMS inertial devices, the accuracy of MEMS gyroscopes and MEMS accelerometers has gradually improved, leading to rapid advancements in the application of MEMS INS. However, the enhancement in the accuracy of MEMS inertial devices has not been sufficient to meet the increasingly high accuracy demands of MEMS INS. Thus, improving the accuracy of MEMS INS through error compensation algorithms and other methods has become a focus of MEMS INS research. To enhance the performance of MEMS INS, researchers have explored various methods to reduce the errors in these systems. There are four main approaches to reducing MEMS INS errors: Calibration and Compensation of Sensor Error Parameters: This involves using mathematical modeling and experimental tools to stimulate sensor errors, systematically calibrating deterministic errors at the system level, and then compensating for these errors through inertial navigation algorithms to improve overall performance.Rotation Modulation Technology: By applying appropriate rotation modulation schemes, sensor errors can be made to vary periodically without relying on external information sources. This automatic error compensation in the navigation algorithm suppresses the influence of sensor errors on MEMS INS.Inertial Device Redundancy Technology: Due to the low cost of MEMS inertial sensors, redundancy designs can be implemented. Redundancy in sensors can effectively reduce the impact of random errors on MEMS INS, thereby enhancing performance.Incorporating External Information Sources: Using Kalman filtering for integrated navigation to suppress the accumulation of MEMS INS errors. This article will further introduce the fourth method, which is the most practical and widely researched integrated navigation form— the GNSS/MEMS INS integrated navigation system. Reasons for Using GNSS to Assist MEMS INS MEMS INS is a type of dead reckoning system that measures the relative state from the previous to the current sampling moment. It does not rely on acoustic, optical, or electrical signals for measurement, making it highly resistant to external interference and deception. Its autonomy and reliability make it a core navigation system for various carriers such as aircraft, ships, and vehicles. Fig.1 lists the performance of INS of different grades. Fig.1 The Performance Of INS Of Different Grades. MEMS INS offers a high update rate and can output comprehensive state information, including position, speed, attitude, angular velocity, and acceleration, with high short-term navigation accuracy. However, MEMS INS requires additional information sources to initialize position, speed, and attitude, and its pure inertial navigation error accumulates over time, particularly in tactical and commercial-grade INS. The GNSS/MEMS INS combination can realize the complementary advantages of both systems: GNSS provides stable long-term accuracy and can offer initial values for position and speed, correcting the accumulated errors in MEMS INS through filtering. Meanwhile, MEMS INS can enhance the update rate of GNSS navigation output, enrich the types of state information output, and assist in detecting and eliminating GNSS observation faults. Basic Model of GNSS/MEMS INS Integrated Navigation The basic model of GNSS/MEMS INS integration reflects the functional relationship between the observed information from sensors (IMU and receivers) and the carrier navigation parameters (position, speed, and attitude), as well as the types and random models of sensor measurement errors. The carrier’s navigation parameters must be described in a specific reference coordinate system. Fig.2 Basic Model Of Gnssmems Ins Integrated Navigation Navigation problems typically involve two or more coordinate systems: the inertial sensors measure the carrier’s motion relative to inertial space, while the carrier’s navigation parameters (position and speed) are usually described in an Earth-fixed coordinate system for intuitive understanding. Commonly used coordinate systems in GNSS/INS integrated navigation include the Earth-centered inertial coordinate system, the Earth-centered Earth-fixed coordinate system, the local geographic coordinate system, and the body coordinate system. Currently, the algorithms for GNSS/MEMS INS integration in absolute navigation have matured, and many high-performance products have emerged on the market. For example, the three newly launched MEMS INS models by Micro-Magic Inc, shown in the image below, are suitable for applications in drones, flight recorders, intelligent unmanned vehicles, roadbed positioning and orientation, channel detection, unmanned surface vehicles, and underwater vehicles. Fig.3 The Three Newly Launched GNSS/MEMS INS By Micro-Magic Inc I3500 High Accuracy 3-Axis Mems Gyro I3500 Inertial Navigation System   I3700 High Accuracy Agricultural Gps Tracker Module Consumption Inertial Navigation System Mtk Rtk Gnss Rtk Antenna Rtk Algorithm  
  • Identification of Quartz Flexible Accelerometer Through Vibration Analysis
    Identification of Quartz Flexible Accelerometer Through Vibration Analysis Jan 13, 2025
    Key Points Product: Quartz Flexible Accelerometer Key Features: Components: Uses high-precision quartz flexible accelerometers for accurate acceleration and tilt measurements. Function: Vibration analysis helps identify sensor error coefficients, improving measurement accuracy and performance. Applications: Widely used in structural health monitoring, aerospace navigation, automotive testing, and industrial machinery diagnostics. Data Analysis: Combines vibration data with signal processing algorithms to optimize sensor models and enhance performance. Conclusion: Delivers precise and reliable acceleration measurements, with strong potential in various high-precision industries. 1.Introduction: In the realm of sensor technology, accelerometers play a pivotal role in various industries, from automotive to aerospace, healthcare to consumer electronics. Their ability to measure acceleration and tilt across multiple axes makes them indispensable for applications ranging from vibration monitoring to inertial navigation. Among the diverse types of accelerometers, quartz flexible accelerometers stand out for their precision and versatility. In this article, we delve into the intricacies of identifying quartz flexible accelerometers through vibration analysis, exploring their design, working principles, and the significance of vibration analysis in optimizing their performance. 2.Importance of Vibration Analysis: For the accelerometer to be identified, first, conduct multi-directional vibration table tests on it. Obtain rich raw data through data acquisition software. Then, based on the test data, on the one hand, combine the overall least squares algorithm to identify its high-order error coefficients, improve its signal model equation, enhance the measurement accuracy of the sensor, and explore the relationship between the high-order error coefficients of the accelerometer and its operating status. Seek methods to identify its operating status through the high-order error coefficients of the accelerometer. On the other hand, extract its effective feature set, train neural networks, and finally modularize the effective data analysis algorithm through virtual instrument technology. Develop application software for identifying the operating status of quartz flexible accelerometers to achieve rapid and accurate identification of sensor operating status. This will help personnel to promptly improve internal circuit structures, enhance the measurement accuracy of accelerometers, and improve the yield of manufactured products during the processing and manufacturing process. Vibration analysis serves as a cornerstone in the characterization and optimization of quartz flexible accelerometers. By subjecting these sensors to controlled vibrations across different frequencies and amplitudes, engineers can evaluate their dynamic response characteristics, including sensitivity, linearity, and frequency range. Vibration analysis helps identify potential sources of error or non-linearity in accelerometer output, enabling manufacturers to fine-tune sensor parameters for enhanced performance and accuracy. 3.Identification Process: The identification of quartz flexible accelerometers through vibration analysis involves a systematic approach encompassing experimental testing, data analysis, and validation. Engineers typically conduct vibration tests using calibrated shakers or vibration excitation systems, exposing the accelerometers to sinusoidal or random vibrations while recording their output signals. Advanced signal processing techniques such as Fourier analysis and spectral density estimation are employed to analyze the frequency response of the accelerometers and identify resonance frequencies, damping ratios, and other critical parameters. Through iterative testing and analysis, engineers refine the accelerometer model and validate its performance against specified criteria. 4.Applications and Future Prospects: Quartz flexible accelerometers find applications across a diverse array of industries, including structural health monitoring, aerospace navigation, automotive testing, and industrial machinery diagnostics. Their high precision, robustness, and versatility make them indispensable tools for engineers and researchers striving to understand and mitigate the effects of dynamic forces and vibrations. Looking ahead, ongoing advancements in sensor technology and signal processing algorithms are poised to further enhance the performance and capabilities of quartz flexible accelerometers, unlocking new frontiers in vibration analysis and dynamic motion sensing. In conclusion, the identification of quartz flexible accelerometers through vibration analysis represents a critical endeavor in sensor technology, enabling engineers to unlock the full potential of these precision instruments. By understanding the working principles, conducting thorough vibration analysis, and refining sensor performance, manufacturers and researchers can harness the capabilities of quartz accelerometers for a myriad of applications, ranging from structural monitoring to advanced navigation systems. As technological innovation continues to accelerate, the role of vibration analysis in optimizing sensor performance will remain paramount, driving advancements in precision measurement and dynamic motion sensing. 5.Conclusion Micro-Magic Inc provides high-precision quartz flexible accelerometers, such as AC1, with small error and high precision, which have a bias stability of 5μg, scale factor repeatability of 15~50 ppm, and a weight of 80g, and can be widely used in the fields of oil drilling, carrier microgravity measurement system, and inertial navigation.   AC1 Navigation Class Level Quartz Flexible Accelerometer With Measurement Range 50G Excellent Long-Term Stability And Repeatability    
  • IMU Data Denoising Method Based on Wavelet Decomposition
    IMU Data Denoising Method Based on Wavelet Decomposition Jan 13, 2025
    Key Points Product: GNSS-aided MEMS Inertial Navigation System (INS) Key Features: Components: Equipped with MEMS gyroscopes and accelerometers for accurate inertial measurements, with GNSS support for enhanced navigation. Function: Combines short-term INS precision with long-term GNSS stability, delivering continuous navigation data. Applications: Suited for tactical operations, drones, robotics, and industrial automation. Data Fusion: Merges INS data with GNSS corrections to reduce drift and improve positioning accuracy. Conclusion: Delivers high precision and reliability, ideal for navigation tasks across diverse industries. In the noise reduction process of IMU (Inertial Measurement Unit), wavelet denoising is an effective method. The basic principle of wavelet denoising is to use the multi-resolution time-frequency localization characteristics of wavelets to decompose the components of different frequencies in the signal into different subspaces, and then process the wavelet coefficients in these subspaces to remove noise. Specifically, the process of wavelet denoising can be divided into the following three steps: 1.Perform wavelet transformation on the noisy IMU signal and decompose it into different wavelet subspaces. 2.Threshold the coefficients in these wavelet subspaces, that is, coefficients below a certain threshold are regarded as noise and set to zero, while coefficients above the threshold are retained, and these coefficients usually contain useful signal information. 3.Perform inverse transformation on the processed wavelet coefficients to obtain the denoised signal. This method can effectively remove the noise in the IMU signal and improve the quality and accuracy of the signal. At the same time, because the wavelet transform has good time-frequency characteristics, it can better retain the useful information in the signal and avoid excessive information loss during the denoising process. Please note that the specific threshold selection and processing methods may vary according to specific signal characteristics and noise conditions, and therefore need to be adjusted and optimized according to specific circumstances in actual applications. The IMU data denoising method based on wavelet decomposition is an effective signal processing technology used to remove noise from IMU (Inertial Measurement Unit) data. IMU data often contains high-frequency noise and low-frequency drift, which can affect the accuracy and performance of the IMU. The noise reduction method based on wavelet decomposition can effectively separate and remove these noises and drifts, thereby improving the accuracy and reliability of IMU data. Wavelet decomposition is a multi-scale analysis technique that can decompose signals into wavelet components of different frequencies and scales. By wavelet decomposing the IMU data, high-frequency noise and low-frequency drift can be separated and processed differently. The IMU data denoising method based on wavelet decomposition usually includes the following steps: 1.Perform wavelet decomposition on the IMU data and decompose it into wavelet components of different frequencies and scales. 2.According to the characteristics of the wavelet components, select an appropriate threshold or wavelet coefficient processing method to suppress or remove high-frequency noise. 3.Model and compensate for low-frequency drift to reduce its impact on IMU data. 4.Reconstruct the processed wavelet components to obtain denoised IMU data.   The IMU data denoising method based on wavelet decomposition has the following advantages: 1.Able to effectively separate and remove high-frequency noise and low-frequency drift, improving the accuracy and reliability of IMU data. 2.Have good time-frequency analysis capabilities and be able to process the time and frequency information of signals at the same time. 3.Suitable for different types of IMU data and different application scenarios, with strong versatility and flexibility. Summarize In short, the IMU data denoising method based on wavelet decomposition is an effective signal processing technology that can improve the accuracy and reliability of IMU data and provide more accurate and reliable data for inertial navigation, attitude estimation, motion tracking and other fields. support. The IMU independently developed by Micro-Magic Inc uses some relatively rigorous denoising methods to better demonstrate to consumers higher-precision and low-cost MEMS IMUs, such as U5000 and U3500 as navigation series MEMS IMUs. Technicians conducted various experiments to denoise the IMU data to better meet consumers’ accurate measurement of the motion state of objects. If you want to know more about IMU, please contact our relevant personnel. U3500 IMU MEMS Sensor IMU3500 CAN Output   U5000 Whatever you needs, CARESTONE is at your side.  
  • INS vs. GPS: Which System is the Best for You?
    INS vs. GPS: Which System is the Best for You? Jan 13, 2025
    Key Points Product: Inertial Navigation System (INS) and Global Positioning System (GPS) Key Features: Components: INS uses accelerometers and gyroscopes; GPS relies on satellite signals. Function: INS provides autonomous navigation without external signals; GPS offers precise geolocation with global coverage. Applications: INS is ideal for underwater, underground, and space; GPS is used in personal navigation, military, and tracking. Integration: Combining INS and GPS enhances accuracy and reliability in complex environments. Conclusion: Choosing between INS and GPS depends on specific needs, with many applications benefiting from their integration for optimal navigation solutions. For complex vehicles such as airplanes, autonomous vehicles, ships, spacecraft, submarines, and UAVs, having an accurate system to maintain and control perfect movement is essential. Two of the most prominent navigation systems in use today are the Inertial Navigation System (INS) and the Global Positioning System (GPS). Both have their unique advantages and applications, but choosing the best system for your needs depends on several factors. This article will explore the differences, strengths, and ideal use cases for each system to help you make an informed decision. Understanding INS and GPS Inertial Navigation System (INS): The MEMS north finder can provide heading information to the moving body in a fully autonomous manner, working without relying on satellites, not affected by climate, and not requiring complex operations. It not only provides the data output interface for the computer, but also provides a good man-machine interface. The MEMS North finder is mainly composed of the inertial measurement module (IMU) and the line part, and the hardware block diagram is shown in Figure 1. Inertial measurement unit (IMU) is composed of gyroscope and rotary mechanism. The circuit part is mainly composed of four circuit boards, including: power board, control board, power amplifier board and base plate. Table 1 shows the components of the north seeking system. Global Positioning System (GPS): The Global Positioning System is a satellite-based navigation system that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. GPS is highly accurate and provides continuous positioning information, making it ideal for a wide range of applications, from personal navigation to military operations. However, GPS signals can be obstructed by buildings, trees, or atmospheric conditions, leading to potential inaccuracies. GPS technology is primarily used for location data, mapping, tracking moving objects, navigation, and timing estimations and measurements. However, this information relies on satellite connections, and if the GPS device cannot connect to at least four satellites, the data provided will be insufficient for full operational functionality.   Strengths and Weaknesses INS Strengths: Independence: Does not rely on external signals, making it useful in GPS-denied environments. Instantaneous Response: Provides immediate updates on position and velocity. Robustness: Less susceptible to jamming or signal interference. INS Weaknesses: Drift: Accumulated errors can lead to inaccuracies over time. Complexity: Generally more complex and expensive than GPS systems. Fig.2 Pros And Cons Of Ins And Gnss GPS Strengths: Accuracy: Provides precise location information, often within a few meters. Coverage: Global coverage with continuous updates. Ease of Use: Widely available and relatively inexpensive. GPS Strengths: Signal Dependency: Requires a clear line of sight to satellites, which can be obstructed. Vulnerability: Susceptible to jamming, spoofing, and interference. Combining INS and GPS In many applications, INS and GPS are used together to leverage their complementary strengths. By integrating GPS data with INS, the system can correct for INS drift and provide more reliable and accurate navigation. This combination is particularly valuable in aviation, where continuous and precise navigation is critical, and in autonomous vehicles, where robust and accurate positioning is essential for safe operation. With the rapid development of micro-electromechanical systems (MEMS), smaller and more portable GPS-aided integrated navigation systems have been developed, such as Micro-Magic Inc‘s three models with different accuracy levels. Among them, the ultra-high precision I6600 surveying and tactical-grade system is equipped with a powerful IMU, capable of outputting highly accurate position, velocity, and attitude information. Conclusion Choosing between INS and GPS depends on your specific needs and the environment in which you will be operating. If you require a system that is independent of external signals and can function in challenging environments, INS may be the best choice. However, if you need highly accurate, continuous positioning information with global coverage, GPS is likely the better option. For many applications, combining both systems can provide the optimal solution, ensuring reliability and precision in navigation. By understanding the strengths and limitations of each system, you can make an informed decision and select the navigation system that best meets your requirements.   I6700 MEMS GNSS-Aided Inertial Navigation System    
  • Pipeline IMU Detection Principle and Data Processing
    Pipeline IMU Detection Principle and Data Processing Jan 13, 2025
    Key Points Product: IMU for Pipeline Inspection Key Features: Components: Equipped with MEMS gyroscopes and accelerometers for measuring angular velocity and acceleration. Function: Monitors pipeline conditions by detecting bends, diameter variations, and cleanliness through precise measurements of motion and orientation. Applications: Used in pipeline inspection, including strain identification, diameter measurement, and cleaning processes. Data Processing: Collects and processes data for accurate assessment of pipeline health, curvature, and strain. Conclusion: Provides critical insights for pipeline maintenance, improving efficiency and reliability in inspection and maintenance operations. 1.IMU measurement principle IMU (Inertial Measurement Unit) is a device that can measure the angular velocity and acceleration of an object in three-dimensional space. Its core components usually include a three-axis gyroscope and a three-axis accelerometer. Gyroscopes are used to measure the angular velocity of an object about three orthogonal axes, while accelerometers are used to measure the acceleration of an object along three orthogonal axes. By integrating these measurements, the velocity, displacement and attitude information of the object can be obtained. 2.Pipe bending strain identification In pipeline inspection, IMU can be used to identify the bending strain of the pipeline. When an IMU is installed on a pig or other mobile device and moves within a pipeline, it can sense changes in acceleration and angular velocity caused by pipeline bending. By analyzing this data, the degree and location of pipe bends can be identified. 3.Diameter measurement and pipe cleaning process The diameter measuring and cleaning process is an important part of pipeline maintenance. In this process, a caliper pig equipped with an IMU is used to move along the pipeline, measure the inner diameter of the pipeline, and record the shape and size of the pipeline. This data can be used to assess the health of pipelines and predict possible maintenance needs. 4.Steel brush cleaning process The steel brush pigging process is used to remove dirt and sediment from the inner walls of pipelines. In this process, a pig with a steel brush and an IMU moves along the pipeline, cleaning the inner wall of the pipeline through brushing and scouring. The IMU can record the geometric information and cleanliness of the pipeline during this process. 5.IMU detection process The IMU inspection process is a key step in using IMU for data collection and measurement during pipeline maintenance. The IMU is installed on a pig or similar equipment and moves inside the pipeline while recording acceleration, angular velocity and other parameters. This data can be used to analyze the health of the pipeline, identify potential problems, and provide a basis for subsequent maintenance and management. 6.Data acquisition and post-processing After completing the IMU detection process, the collected data need to be collected and post-processed. Data acquisition involves transferring raw data from the IMU device to a computer or other data processing device. Post-processing involves cleaning, calibrating, analyzing and visualizing the data. Through post-processing, useful information can be extracted from the original data, such as the shape, size, bending degree, etc. of the pipe. 7.Speed and attitude measurement IMU can calculate the speed and attitude of an object by measuring acceleration and angular velocity. In pipeline inspection, measurement of speed and attitude is critical to assess the health of the pipeline and identify potential problems. By monitoring the speed and attitude changes of the pig in the pipeline, the shape, bending degree and possible obstacles of the pipeline can be inferred. 8.Pipe Curvature and Strain Assessment Using the data measured by the IMU, the curvature and strain of the pipeline can be evaluated. By analyzing acceleration and angular velocity data, the radius of curvature and bending angle of the pipe at different locations can be calculated. At the same time, combined with the material properties and loading conditions of the pipe, the strain level and stress distribution of the pipe at the bend can also be evaluated. This information is important for predicting the life of pipelines, assessing safety, and developing maintenance plans. Summarize To sum up, IMU plays an important role in pipeline inspection. By measuring parameters such as acceleration and angular velocity, comprehensive assessment and maintenance of pipeline health can be achieved. With the continuous advancement of technology and the expansion of application fields, the application of IMU in pipeline inspection will become more and more extensive. The MEMS IMU independently developed by Micro-Magic Inc has relatively high accuracy, such as U5000 and U7000, which are more accurate and are navigation-grade products. If you want to know more about IMU, please contact our professional technicians as soon as possible. U7000 Industrial Grade Temperature Compsensated Full Calibrated Strapdown 6Dof With Kalman Filter Algorithm   U5000 Rs232/485 Gyroscope Imu For Radar/infrared antenna stabilization platform  
  • Precision Analysis of Fiber Optic Gyro Engineering Structure Deformation Detection
    Precision Analysis of Fiber Optic Gyro Engineering Structure Deformation Detection Jan 13, 2025
    Key Points Product: Fiber Optic Gyroscope-Based Deformation Detection System Key Features: Components: Incorporates high-precision fiber optic gyroscopes for angular velocity measurement and trajectory calculation. Function: Combines gyroscopic data with distance measurements to detect structural deformations with high accuracy. Applications: Suitable for civil engineering, structural health monitoring, and deformation analysis in bridges, buildings, and other infrastructures. Performance: Achieves deformation detection accuracy better than 10 μm at a running speed of 2 m/s using medium-precision gyroscopes. Advantages: Compact design, lightweight, low power consumption, and user-friendly operation for ease of deployment. Conclusion:This system provides precise and reliable deformation measurements, offering valuable solutions for engineering and structural analysis needs. 1 Method of engineering structure deformation detection based on fiber optic gyroscope The principle of the engineering structure deformation detection method based on fiber optic gyro is to fix the fiber optic gyro to the detection device, measure the angular velocity of the detection system when running on the measured surface of the engineering structure, measure the operating distance of the detection device, and calculate the operating trajectory of the detection device to realize the detection of engineering structure deformation. This method is referred to as the trajectory method in this paper. This method can be described as “two-dimensional plane navigation”, that is, the position of the carrier is solved in the plumb surface of the measured structure surface, and the trajectory of the carrier along the measured structure surface is finally obtained. According to the principle of trajectory method, its main error sources include reference error, distance measurement error and Angle measurement error. The reference error refers to the measurement error of the initial inclination Angle θ0, the distance measurement error refers to the measurement error of ΔLi, and the Angle measurement error refers to the measurement error of Δθi, which is mainly caused by the measurement error of the angular velocity of the fiber optic gyroscope. This paper does not consider the influence of reference error and distance measurement error on the deformation detection error, only the deformation detection error caused by the fiber optic gyroscope error is analyzed. 2 Analysis of deformation detection accuracy based on fiber optic gyroscope 2.1 Error modeling of fiber optic gyroscope in deformation detection applications Fiber optic gyro is a sensor for measuring angular velocity based on Sagnac effect. After the light emitted by the light source passes through the Y-waveguide, two beams of light rotating in opposite directions in the fiber ring are formed. When the carrier rotates relative to the inertial space, there is an optical path difference between the two beams of light, and the optical interference signal related to the rotational angular speed can be detected at the detector end, so as to measure the diagonal speed.The mathematical expression of the fiber optic gyro output signal is: F=Kw+B0+V. Where F is the gyro output, K is the scale factor, and ω is the gyroThe angular velocity input on the sensitive axis, B0 is the gyroscopic zero bias, υ is the integrated error term, including white noise and slowly varying components caused by various noises with long correlation time, υ can also be regarded as the error of zero bias.The sources of measurement error of fiber optic gyroscope include scale factor error and zero deviation error. At present, the scale factor error of the fiber optic gyroscope applied in engineering is 10-5~10-6. In the application of deformation detection, the angular velocity input is small, and the measurement error caused by the scale factor error is much smaller than that caused by the zero deviation error, which can be ignored. The DC component of the zero-bias error is characterized by the zero-bias repeatability Br, which is the standard deviation of the zero-bias value in multiple tests. The AC component is characterized by zero bias stability Bs, which is the standard deviation of the gyroscope output value from its mean in one test, and its value is related to the sampling time of the gyroscope. 2.2 Calculation of deformation error based on fiber optic gyroscope Taking the simple supported beam model as an example, the error of deformation detection is calculated, and the theoretical model of structural deformation is established. On this basis, the detection is setBased on the operating speed and sampling time of the system, the theoretical angular velocity of the fiber optic gyro can be obtained. Then the angular velocity measurement error of the fiber optic gyro can be simulated according to the zero deviation error model of the fiber optic gyro established above. 2.3 Example simulation calculation The simulation setting of running speed and sampling time adopts a range-varying mode, that is, the ΔLi passed by each sampling time is fixed, and the sampling time of the same line segment is changed by changing the running speed. For example, when the ΔLi is 1 mm, such as the running speed is 2 m/s, the sampling time is 0.5 ms. If the operating speed is 0.1 m/s, the sampling time is 10 ms. 3 Relationship between fiber optic gyroscope performance and deformation measurement error Firstly, the effect of zero-bias repeatability error is analyzed. When there is no zero bias stability error, the angular velocity measurement error caused by zero bias error is fixed, such as the faster the motion speed, the shorter the total measurement time, the smaller the impact of zero bias error, the smaller the deformation measurement error. When the running speed is fast, the zero bias stability error is the main factor causing the system measurement error. When the running speed is low, the zero bias repeatability error becomes the main source of the system measurement error.Using typical medium precision fiber optic gyro index, that is, zero bias stability is 0.5 °/h when sampling time is 1 s, Zero repeatability is 0.05 °/h. Compare the system measurement errors at the operating speed of 2 m/s, 1 m/s, 0.2 m/s, 0.1 m/s, 0.02 m/s, 0.01 m/s, 0.002 m/s and 0.001 m/s. When the operating speed is 2 m/s, The measurement error is 8.514μm (RMS), when the measurement speed is reduced to 0.2m /s, the measurement error is 34.089μm (RMS), when the measurement speed is reduced to 0.002m /s, the measurement error is 2246.222μm (RMS), as can be seen from the comparison results. The faster the running speed, the smaller the measuring error. Considering the convenience of engineering operation, the running speed of 2 m/s can achieve better than 10 μm measurement accuracy. 4 Summary Based on the simulation analysis of the engineering structure deformation measurement based on fiber optic gyro, the error model of fiber optic gyro is established, and the relationship between the deformation measurement error and the performance of fiber optic gyro is obtained by using the simple supported beam model as an example. The simulation results show that the faster the system runs, that is, the shorter the sampling time of the fiber optic gyroscope, the higher the deformation measurement accuracy of the system when the sampling number is unchanged and the distance detection accuracy is guaranteed. With the typical medium precision fiber optic gyro index and the running speed of 2 m/s, the deformation measurement accuracy of better than 10 μm can be achieved.Micro-Magic Inc GF-50 has a diameter of φ50*36.5mm and an accuracy of 0.1º/h. GF-60 precision 0.05º/h, belongs to the high tactical level of the fiber optic gyroscope, our company produced gyroscope with small size, light weight, low power consumption, fast start, simple operation, easy to use and other characteristics, widely used in INS, IMU, positioning system, north finding system, platform stability and other fields. If you are interested in our fiber optic gyro, please feel free to contact us. GF50 Single-Axis Medium Accuracy Military Standard Fiber Optic Gyroscope   GF60 Single Axis Fiber Gyro Low Power Fiber Optic Gyro Imu Angular Rate for Navigation  
1 2 3
A total of3pages
Subscibe To Newsletter
Please read on, stay posted, subscribe, and we welcome you to tell us what you think.
f y

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact Us